

1 LARAPINTA PLACE, GLENHAVEN NSW PROPOSED MOSQUE

STORMWATER CONCEPT PLANS

LEGEND

	PROPOSED STORMWATER
	EXISTING WATER (FROM RECORDS)
	EXISTING TELSTRA (FROM RECORDS)
	GUTTER DOWNPipe
	ROOF SLOPE
	Ø300 CLEANING EYE
	5,000L RAINWATER TANK
	SURFACE FLOW ARROWS
	DESIGN SURFACE LEVEL
	EXISTING SURFACE LEVEL
	INVERT LEVEL OF PIPE JUNCTION
	FENCE WITH 50mm GAP BENEATH FOR OVERLAND FLOWS
	CLOSED STYLE FENCING
	MASONRY RETAINING WALL TO STRUCTURAL ENGINEER'S DETAILS
	SWALE DRAIN
	PROPOSED OSD STORAGE
	ROOF AREA TO RAINWATER TANK
	TREES TO BE RETAINED
	TREES TO BE REMOVED

LOCALITY PLAN

N.T.S

PIPES NOTE:
Ø65 PVC @ MIN 1.0%
Ø90 PVC @ MIN 1.0%
Ø100 PVC @ MIN 1.0%
Ø150 PVC @ MIN 1.0%
Ø225 PVC @ MIN 0.5%
Ø300 PVC @ MIN 0.4%
UNLESS NOTED OTHERWISE

DRAWING INDEX	
Drawing No.	DESCRIPTION
000	COVER SHEET, NOTES & LEGEND
101	STORMWATER CONCEPT PLAN BASEMENT LEVEL SHEET 1 OF 2
102	STORMWATER CONCEPT PLAN BASEMENT LEVEL SHEET 2 OF 2
103	STORMWATER CONCEPT PLAN
104	ON-SITE DETENTION DETAILS AND CALCULATION SHEETS SHEET 1 OF 2
105	ON-SITE DETENTION DETAILS AND CALCULATION SHEETS SHEET 2 OF 2
106	MISCELLANEOUS DETAILS SHEET

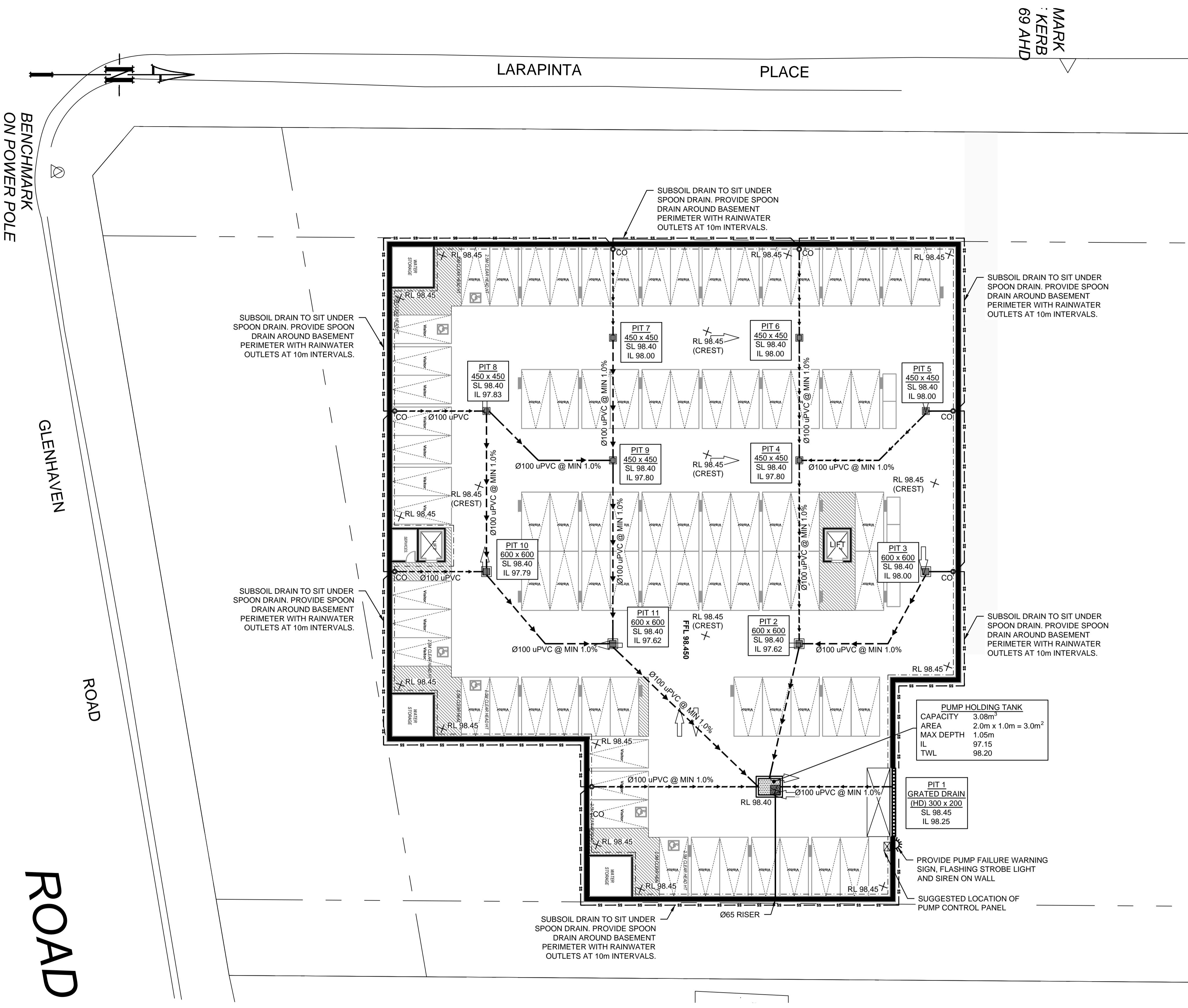
NOT FOR CONSTRUCTION

D	ARCHITECTURAL AMENDMENTS	01/02/2019	JTF	JAB
C	COUNCIL COMMENTS	12/06/2018	JTF	JAB
B	COUNCIL COMMENTS	17/05/2018	JTF	JAB
A	ISSUE FOR DEVELOPMENT APPLICATION	19/04/2018	JTF	JAB
	Issue Description	Date	Design	Checked
		1cm at full size	10cm	20cm

Certification By Dr. Anthony Hasham (NPER):

Architect
**IDRAFT
ARCHITECTS**
Unit 43, 2 Slough Ave,
Silverwater NSW
PHONE : (02) 9648 8848

Council
The Hills Shire Council


Scale

**AUSTRALIAN
CONSULTING
ENGINEERS.**
AUSTRALIAN PTY LTD - A.C.N. 084 059 941
CONSULTING SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2157
ENGINEERS PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project
**1 LARAPINTA PLACE, GLENHAVEN NSW
PROPOSED MOSQUE
STORMWATER CONCEPT PLANS
DEVELOPMENT APPLICATION**

Drawing Title
**COVER SHEET,
NOTES & LEGEND**

Scale	A1	Project No.	180511	Dwg. No.	000	Issue	D
N.T.S.							

BASEMENT PLAN

SCALE 1:200

STANDARD PUMP OUT DESIGN NOTES

THE PUMP OUT SYSTEM SHALL BE DESIGN TO BE OPERATED IN THE FOLLOWING MANNER:

- 1 - THE PUMP SHALL BE PROGRAMMED TO WORK ALTERNATELY TO ALLOW BOTH PUMPS TO HAVE AN EQUAL OPERATION LOAD AND PUMP LIFE.
- 2 - A FLOAT SHALL BE PROVIDED TO ENSURE OF THE MINIMUM REQUIRED WATER LEVEL IS MAINTAINED WITHIN THE SUMP AREA OF THE BELOW GROUND TANK. IN THIS REGARD THIS FLOAT WILL FUNCTION AS AN OFF SWITCH FOR THE PUMPS AT THE MINIMUM WATER LEVEL. THE SAME FLOAT SHALL BE SET TO TURN ONE OF THE PUMPS ON UPON THE WATER LEVEL IN THE TANK RISING TO APPROXIMATELY 300mm ABOVE THE MINIMUM WATER LEVEL. THE PUMP SHALL OPERATE UNTIL THE TANK IS DRAINED TO THE MINIMUM WATER LEVEL.
- 3 - A SECOND FLOAT SHALL BE PROVIDE AT A HIGH LEVEL, WHICH IS APPROXIMATELY THE ROOF LEVEL OF THE BELOW GROUND TANK. THIS FLOAT SHALL START THE OTHER PUMP THAT IS NOT OPERATING AND ACTIVATE THE ALARM.
- 4 - AN ALARM SYSTEM SHALL BE PROVIDE WITH A FLASHING STROBE LIGHT AND A PUMP FAILURE WARNING SIGN WHICH ARE TO BE LOCATED AT THE DRIVEWAY ENTRANCE TO THE BASEMENT LEVEL THE ALARM SYSTEM SHALL BE PROVIDED WITH A BATTERY BACK-UP IN CASE OF POWER FAILURE.
- 5 - A CONFINED SPACE DANGER SIGN SHALL BE PROVIDED AT ALL ACCESS POINT TO THE PUMP-OUT STORAGE TANK IN ACCORDANCE WITH THE UPPER PARRAMATA RIVER CATCHMENT TRUST OSD HANDBOOK

BASEMENT PUMP OUT FAILURE WARNING SIGN

WARNING

**PUMP OUT SYSTEM
FAILURE IN BASEMENT
WHEN LIGHT IS FLASHING
AND SIREN SOUNDING**

CONFINED SPACE DANGER SIGN

A) A CONFINED SPACE DANGER SIGN SHALL BE POSITIONED IN A LOCATION AT ALL ACCESS POINTS, SUCH THAT IT IS CLEARLY VISIBLE TO PERSONS PROPOSING TO ENTER THE BELOW GROUND TANK/S CONFINED SPACE.

- B) MINIMUM DIMENSIONS OF THE SIGN - 300mm x 450mm (LARGE ENTRIES, SUCH AS DOORS) -250mm x 180mm (SMALL ENTRIES SUCH AS GRATES & MANHOLES)
- C) THE SIGN SHALL BE MANUFACTURED FROM COLOUR BONDED

D) SIGN SHALL BE AFFIXED USING SCREWS AT EACH CORNER OF THE SIGN

COLOURS:
"DANGER" & BACKGROUND = WHITE
ELLIPTICAL AREA = RED
RECTANGLE CONTAINING ELLIPSE = BLACK

NOT FOR CONSTRUCTION

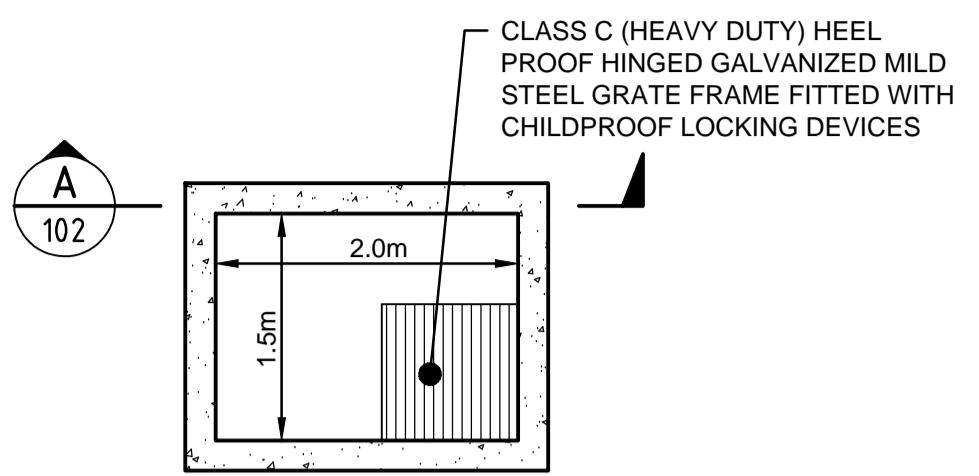
D	ARCHITECTURAL AMENDMENTS
C	COUNCIL COMMENTS
B	COUNCIL COMMENTS
A	ISSUE FOR DEVELOPMENT APPLICATION
Issue	Description

		Certification By Dr. Anthony Hasham (N)
F	JAB	
F	JAB	
F	JAB	
F	JAB	
gn	Checked	
		20cm

Architect
**IDRAFT
ARCHITECTS**
Unit 43, 2 Slough Ave,
Silverwater NSW
PHONE : (02) 9648 8848

The Hills Shire Council

A horizontal scale with tick marks at 0, 4, and 8. The scale is labeled "scale" at the left end. There are 4 major tick marks between 0 and 8, and 5 tick marks in total including 0 and 8.

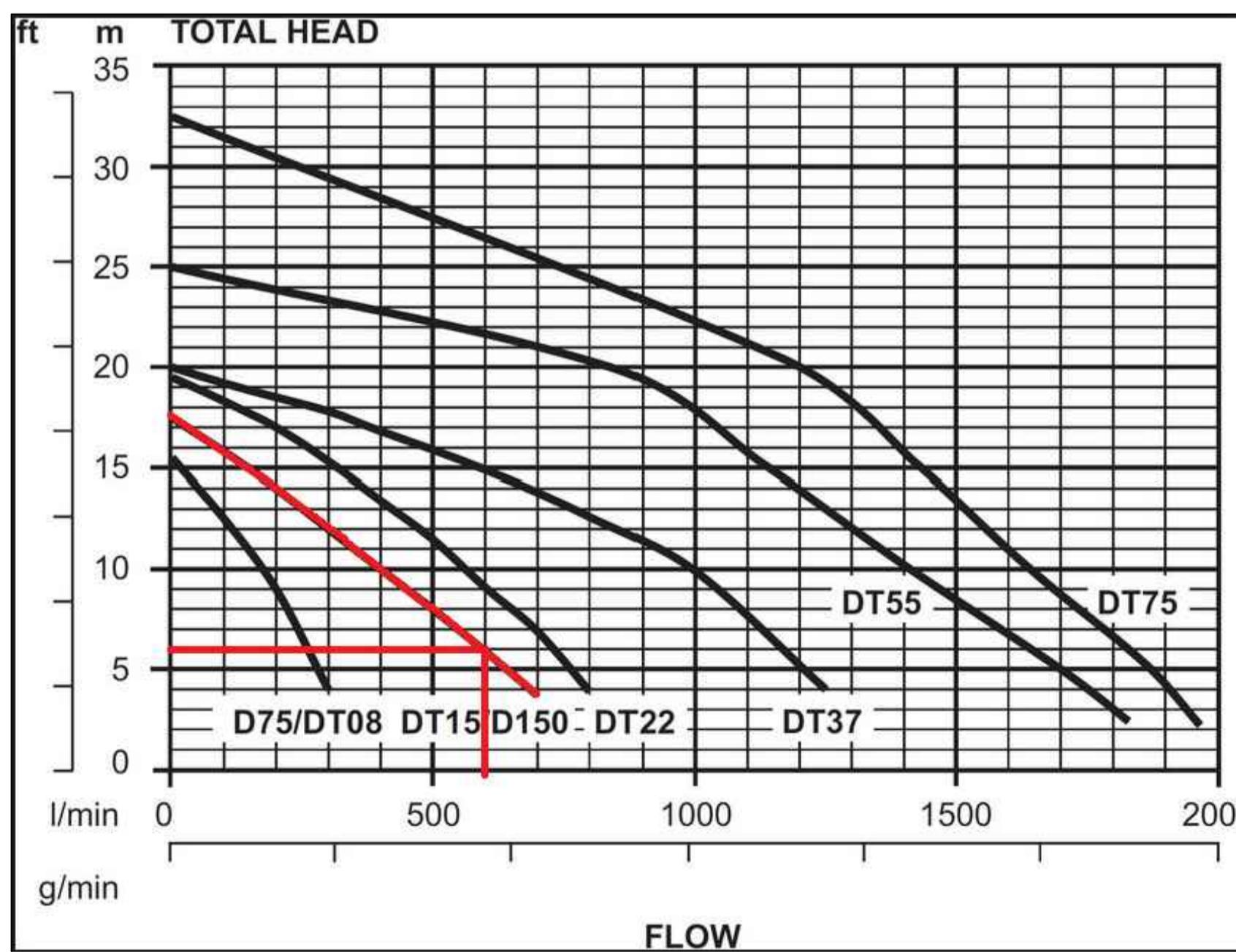

Project
**1 LARAPINTA PLACE, GLENHAVEN NSW
PROPOSED MOSQUE
STORMWATER CONCEPT PLANS
DEVELOPMENT APPLICATION**

Drawing Title

STORMWATER CONCEPT PLAN

BASEMENT LEVEL

SHEET 1 OF 2



NOTE:
1- FOR ALL THE STRUCTURAL DETAILS, REFER TO STRUCTURAL ENGINEER'S PLAN.
2- ALL THE AG LINES BEHIND BASEMENT WALLS TO BE CONNECTED TO PUMP-OUT SUMP.

PUMP-OUT SUMP DETAIL PLAN VIEW
SCALE 1:50

PUMP STORAGE VOLUME CALCULATION

- $I_{100,90\text{ min}} = 56 \text{ mm/hour}$
- PUMP STORAGE CATCHMENT AREA: $A = 32.3 \text{ m}^2 = 0.00323 \text{ ha}$
- $Q = C \times I \times A / 360$ WHERE $C = 1.0$ (REFER TO AS3500.3.5.4.6 (a))
 $= 1.0 \times 56 \times 0.00323 / 360$
 $= 0.000502 \text{ m}^3/\text{s}$
 $= 0.502 \text{ L/s}$
- THEREFORE, THE PUMP HOLDING TANK VOLUME IS:
 $V = 0.5002 \times 1.5 \times 3600$
 $= 2.71 \text{ m}^3$
- TOTAL REQUIRED VOLUME IS 2.71m³

PUMP CALCULATIONS												
Project Address:	1 Larapinta Place, Glenhaven											
$HL = (3.35 \times 10^6 Q / (d^2 \cdot 63 \cdot C))^{1.852}$	$h1 = kv^2 / 2g$		$H(\text{total head}) = Hf + h1 + \text{Elevation Head}(\text{static head})$									
$HL(\text{m}/100\text{m}), Q(\text{L/s}), d(\text{mm})$	$k(\text{cum}), v(\text{m/s}), g = 9.8(\text{m})$		$v(\text{m/s}) = 0.00$					$Elevation \text{Head}(\text{m}) = 5$	$Pipe \text{Length}(\text{m}) = 10$			
$d(\text{mm}) = 65$	$Bend \text{Losses}, Kb = 3.06$		$Hazen - Williams C = 145$					Hazen-Williams Constant				
	$Valve \text{Losses}, Kv = 2.13$		125-140 Commercial steel pipe					135-140 Bitumen Lined Cast iron pipe				
	$Entry/Exit \text{Losses}, Ke = 5.00$		140-145 Copper Tube					145-150 PVC				
	$Cum \text{Losses}, K = 10.19$											
$Q(\text{L/s})$	0	1	2	3	4	5	6	7	8	9	10	
$HL(\text{m}/100\text{m})$	0.00	0.18	0.64	1.36	2.32	3.51	4.92	6.55	8.39	10.44	12.68	
$Hf(\text{m})$	$HL \times \text{pipe Length}/100$											
$v(\text{m/s})$	$Q(\text{L/s}) / \text{area of pipe crossing section}$											
$h1(\text{m})$	$k(\text{cum}) \times v(\text{m/s})^2 / 2g$											
$H(\text{m})$	$= Hf + h1 + \text{Elevation Head}$											

UNDERGROUND PUMP - OUT SUMP STAGED STORAGE CALCULATIONS

DEPTH (mm)	AREA (m ²)	CUMULATIVE VOLUME (m ³)
0	3.0	0
100	3.0	0.225
200	3.0	0.525
300	3.0	0.825
400	3.0	1.125
500	3.0	1.425
600	3.0	1.725
700	3.0	2.025
800	3.0	2.325
900	3.0	2.625
1000	3.0	2.925
1050	3.0	3.075

NOT FOR CONSTRUCTION

D	ARCHITECTURAL AMENDMENTS	01/02/2019	JTF	JAB
C	COUNCIL COMMENTS	12/06/2018	JTF	JAB
B	COUNCIL COMMENTS	17/05/2018	JTF	JAB
A	ISSUE FOR DEVELOPMENT APPLICATION	19/04/2018	JTF	JAB
	Description	Date	Design	Checked
		10cm	20cm	

Certification By Dr. Anthony Hasham (NPER):

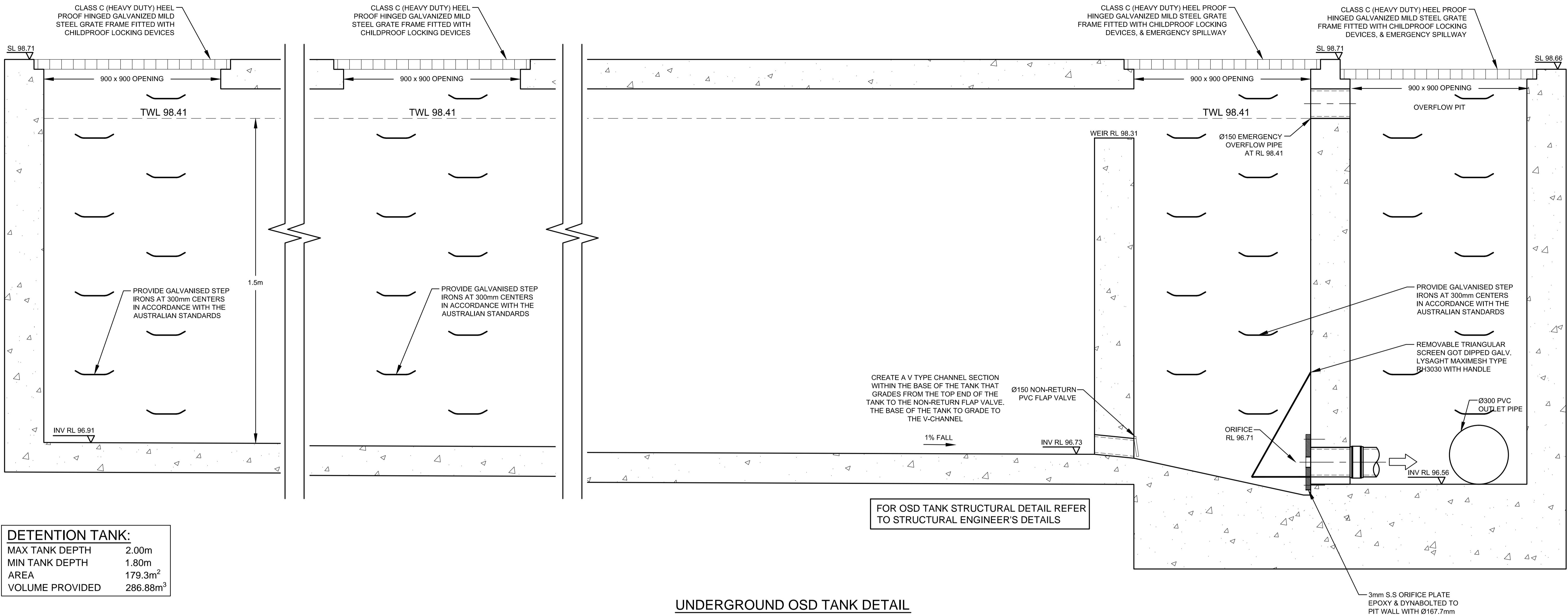
Architect
IDRAFT ARCHITECTS
 Unit 43, 2 Slough Ave,
 Silverwater NSW
 PHONE: (02) 9648 8848

Council
 The Hills Shire Council

Scale

 SCALE 1:10 @ A1

 SCALE 1:50 @ A1


AUSTRALIAN CONSULTING ENGINEERS.
 AUSTRALIAN PTY LTD - A.C.N. 084 059 941
 CONSULTING ENGINEERS. PH: (02) 9763 1500 FX: (02) 9763 1515
 EMAIL: info@aceeng.com.au

Project
1 LARAPINTA PLACE, GLENHAVEN NSW
PROPOSED MOSQUE
STORMWATER CONCEPT PLANS
DEVELOPMENT APPLICATION

Drawing Title
STORMWATER CONCEPT PLAN
BASEMENT LEVEL
SHEET 2 OF 2

Scale A1 Project No. 180511
 As Shown Dwg. No. 102
 Issue D

UNDERGROUND OSD TANK DETAIL

SECTION A

SCALE 1:10

UNDERGROUND OSD TANK STAGED STORAGE CALCULATIONS

DEPTH (mm)	AREA (m²)	CUMULATIVE VOLUME (m³)
0	179.3	0
200	179.3	17.93
300	179.3	35.86
400	179.3	53.79
500	179.3	71.72
600	179.3	89.65
800	179.3	125.51
1000	179.3	161.37
1200	179.3	197.23
1400	179.3	233.09
1600	179.3	268.95
1700	179.3	286.88

OSD CALCULATION:

SITE AREA = 7497.3 m^2
= 0.74973 ha

SITE SLOPE = $(103.85 - 97.21) / 84.8 \text{ m} = 7.8\%$

USING THE TABLE 4.14 OF DESIGN GUIDELINES:

$PSD_{100} = 104 \text{ l/s/ha}$
 $SSR_{100} = 362 \text{ m}^3/\text{ha}$

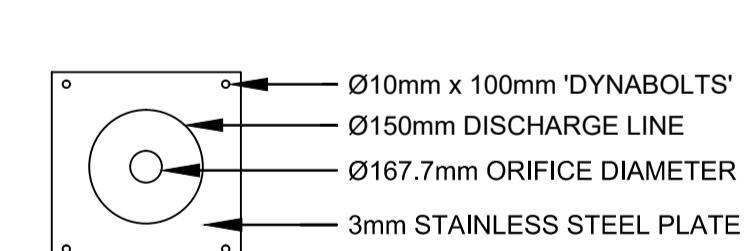
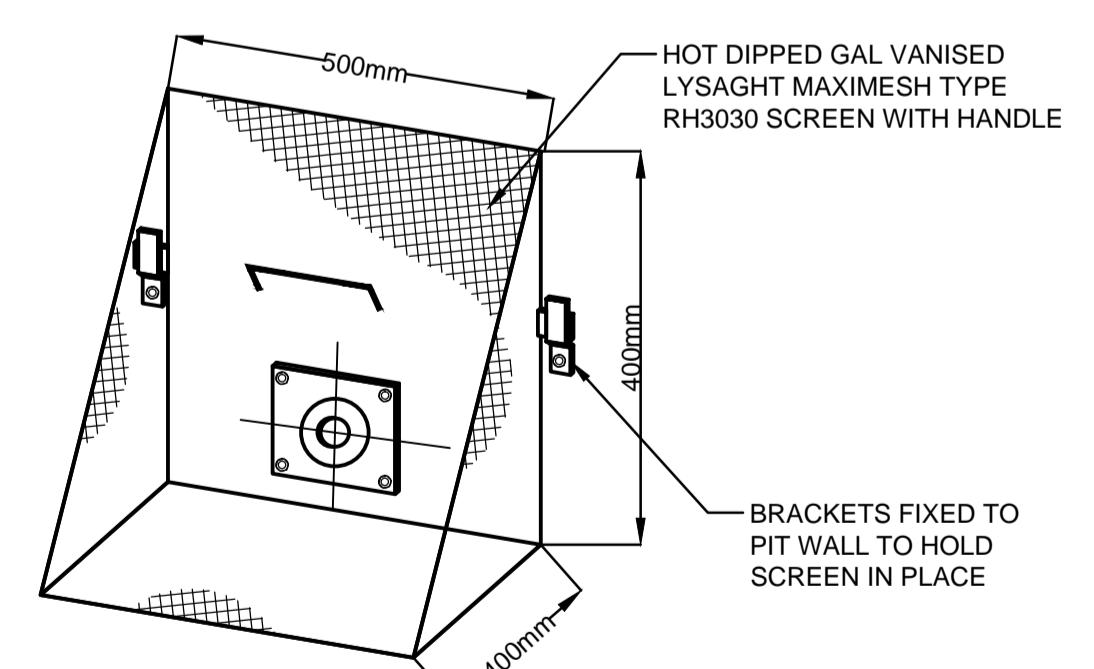
THEREFORE:

$PSD_{100} = 77.97 \text{ l/s}$
 $SSR_{100} = 271.40 \text{ m}^3$

ORIFICE CALCULATION

$$Q = C \times A \times (2 \times g \times h)^{0.5}$$

$$\text{SO: } A = Q / (C \times \sqrt{2 \times g \times h})$$



$$= 0.07797 / (0.61 \times \sqrt{2 \times 9.81 \times 1.70})$$

$$= 0.0221 \text{ m}^2$$

$$\text{THEREFORE: } d = \sqrt{4 \times A / \pi}$$

$$= \sqrt{4 \times 0.0221 / 3.14159}$$

$$= 167.7 \text{ mm}$$

ORIFICE PLATE DETAIL
N.T.S.

TRASH SCREEN DETAIL
N.T.S.

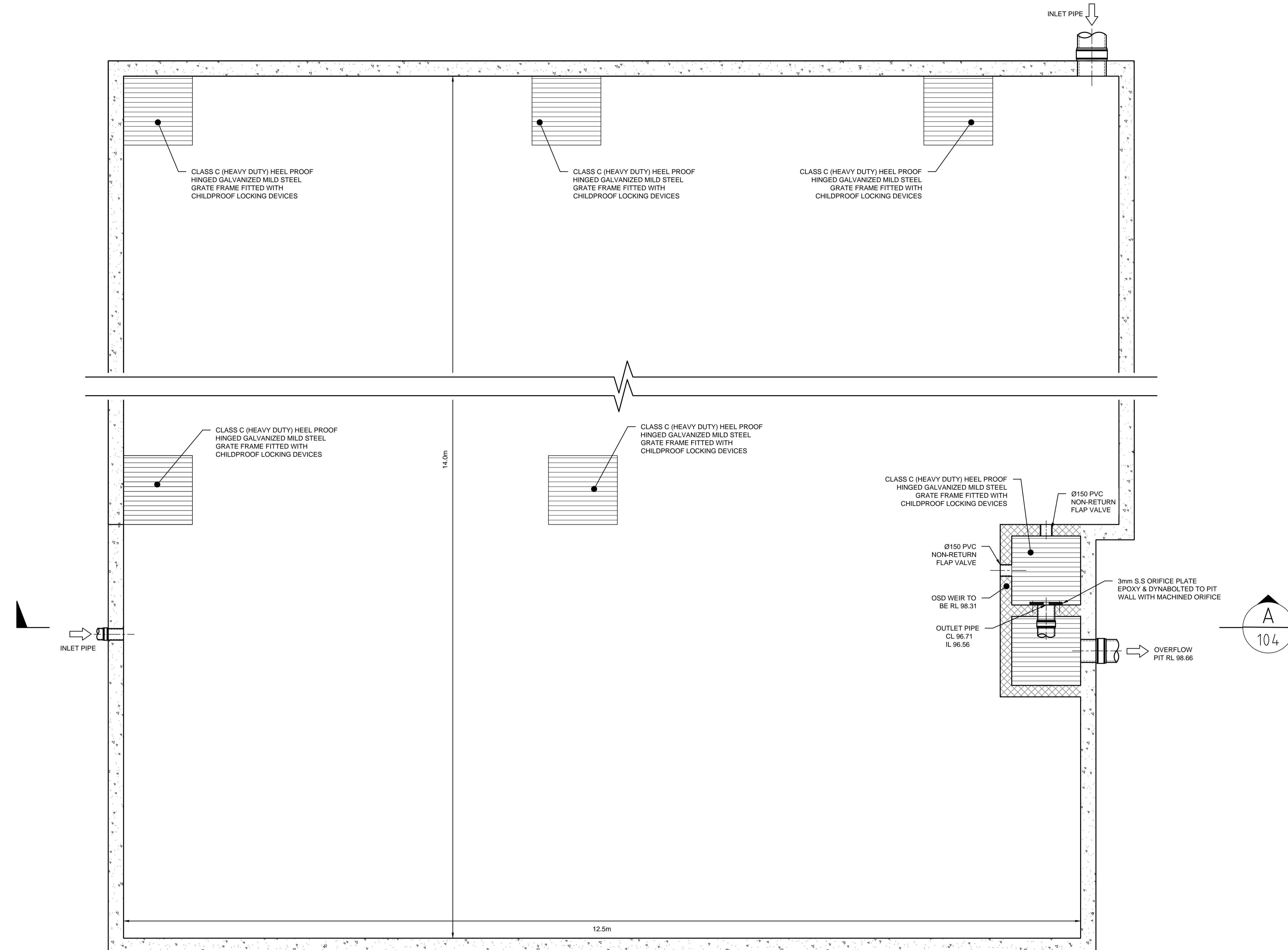
NOT FOR CONSTRUCTION

D	ARCHITECTURAL AMENDMENTS	01/02/2019	JTF	JAB
C	COUNCIL COMMENTS	12/06/2018	JTF	JAB
B	COUNCIL COMMENTS	17/05/2018	JTF	JAB
A	ISSUE FOR DEVELOPMENT APPLICATION	19/04/2018	JTF	JAB
Issue	Description	Date	Design	Checked
		10cm	20cm	

Certification By Dr. Anthony Hasham (NPER):

Architect
**IDRAFT
ARCHITECTS**
Unit 43, 2 Slough Ave,
Silverwater NSW
PHONE : (02) 9648 8848

Council
The Hills Shire Council

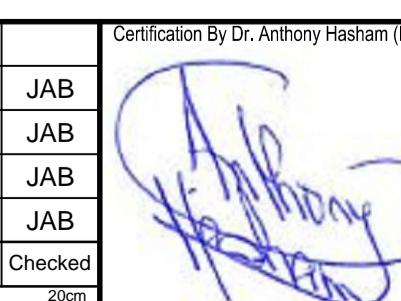

Scale
0 200 400 600mm
SCALE 1:10 @ A1

**AUSTRALIAN
CONSULTING
ENGINEERS.**
AUSTRALIAN PTY LTD - A.C.N. 084 059 941
CONSULTING SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2157
PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project
**1 LARAPINTA PLACE, GLENHAVEN NSW
PROPOSED MOSQUE
STORMWATER CONCEPT PLANS
DEVELOPMENT APPLICATION**

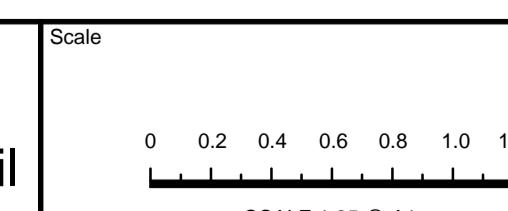
Drawing Title
**ON-SITE DETENTION DETAILS
AND CALCULATION SHEETS
SHEET 1 OF 2**

Scale 1:10 Project No. 180511 Dwg. No. 104 Issue D



UNDERGROUND OSD TANK PLAN VIEW

SCALE 1:25


NOT FOR CONSTRUCTION

D	ARCHITECTURAL AMENDMENTS	01/02/2019	JTF	JAB
C	COUNCIL COMMENTS	12/06/2018	JTF	JAB
B	COUNCIL COMMENTS	17/05/2018	JTF	JAB
A	ISSUE FOR DEVELOPMENT APPLICATION	19/04/2018	JTF	JAB
Issue	Description	Date	Design	Checked
		1cm at full size	10cm	20cm

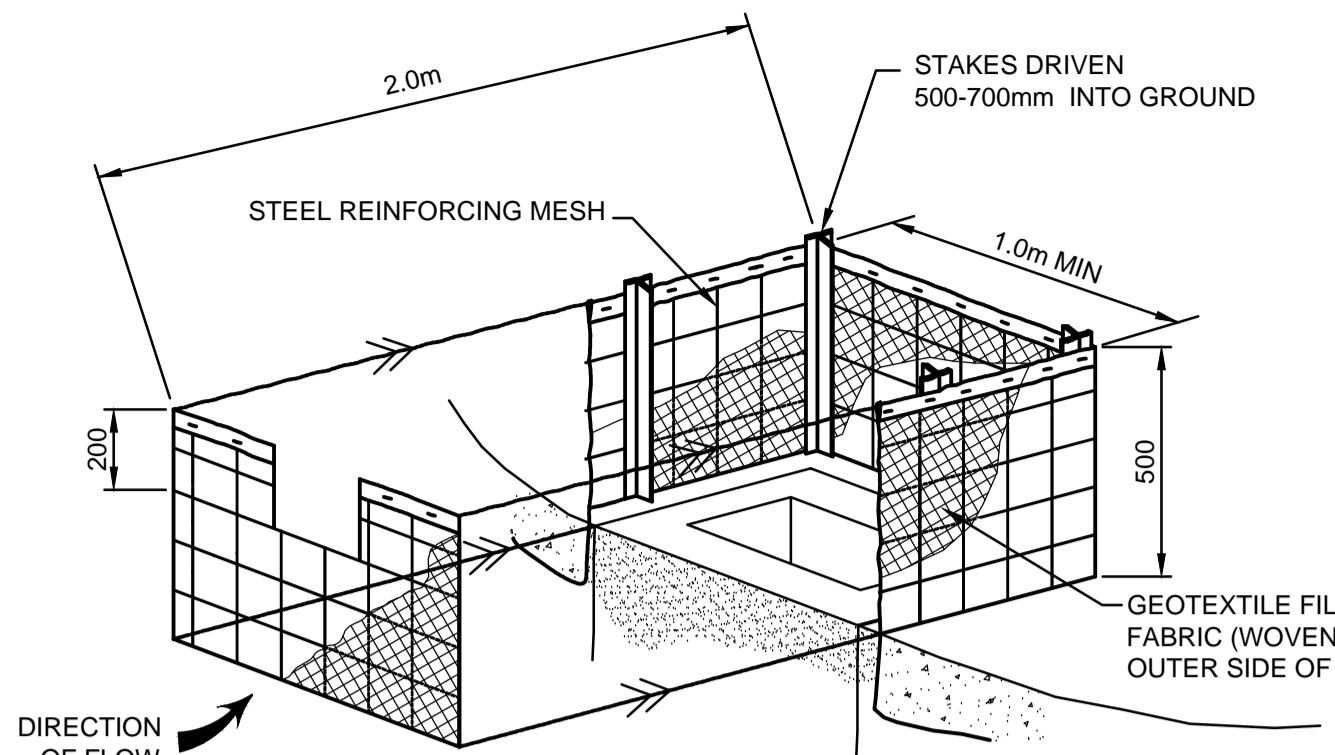
Certification By Dr. Anthony Hasham (NPER):

Architect
**IDRAFT
ARCHITECTS**
Unit 43, 2 Slough Ave,
Silverwater NSW
PHONE : (02) 9648 8848

Council
The Hills Shire Council

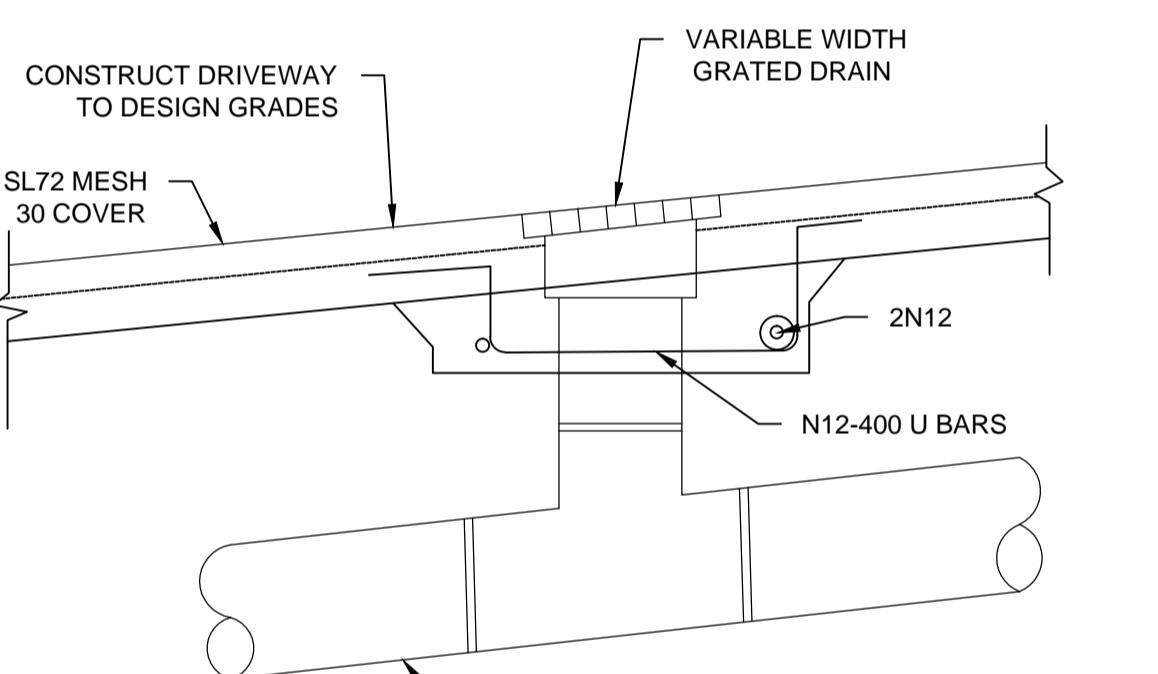
Scale

SCALE 1:25 @ A1

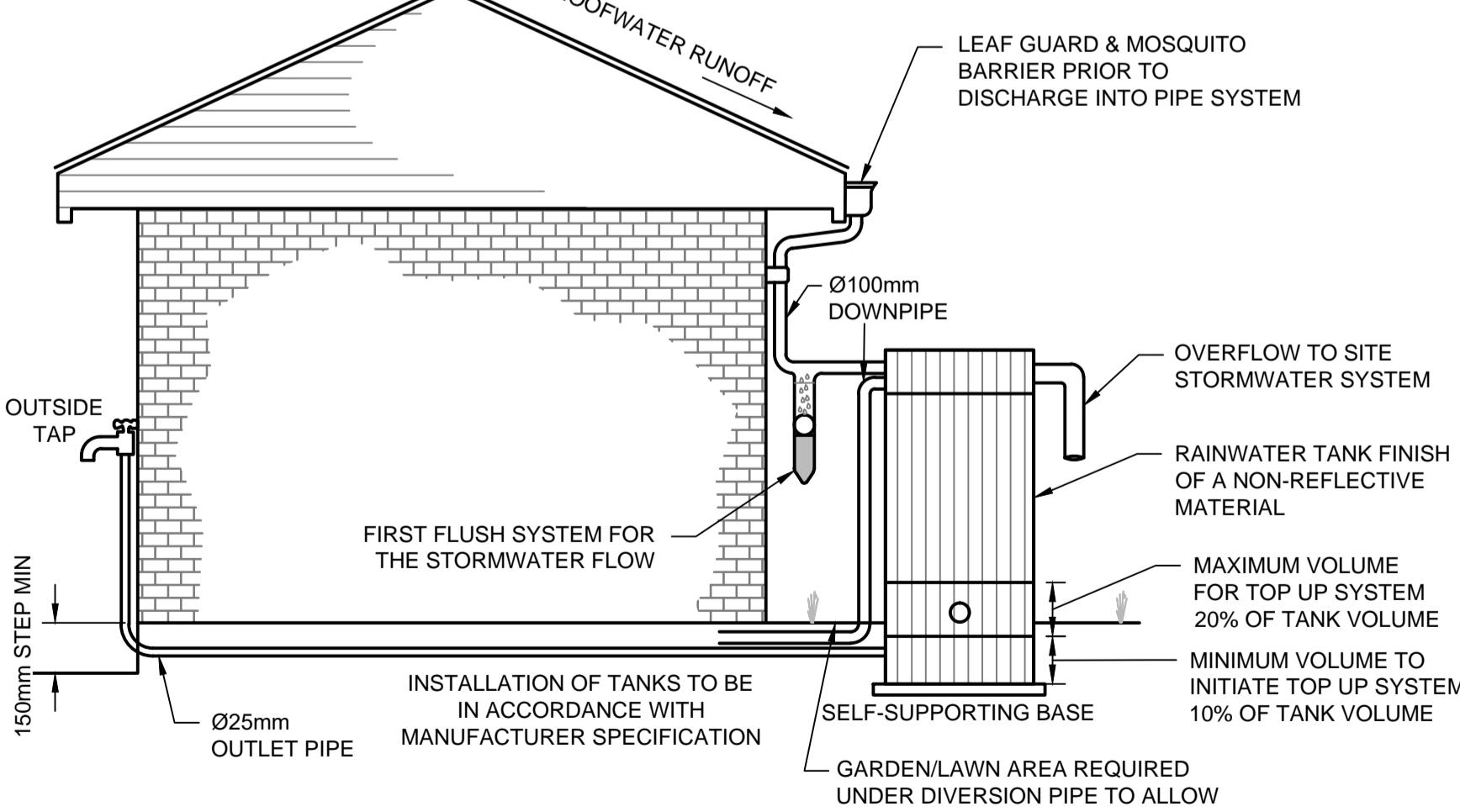

 **AUSTRALIAN
CONSULTING
ENGINEERS.**
AUSTRALIAN PTY LTD - A.C.N. 084 059 941
CONSULTING SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2135
ENGINEERS PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project
**1 LARAPINTA PLACE, GLENHAVEN NSW
PROPOSED MOSQUE
STORMWATER CONCEPT PLANS
DEVELOPMENT APPLICATION**

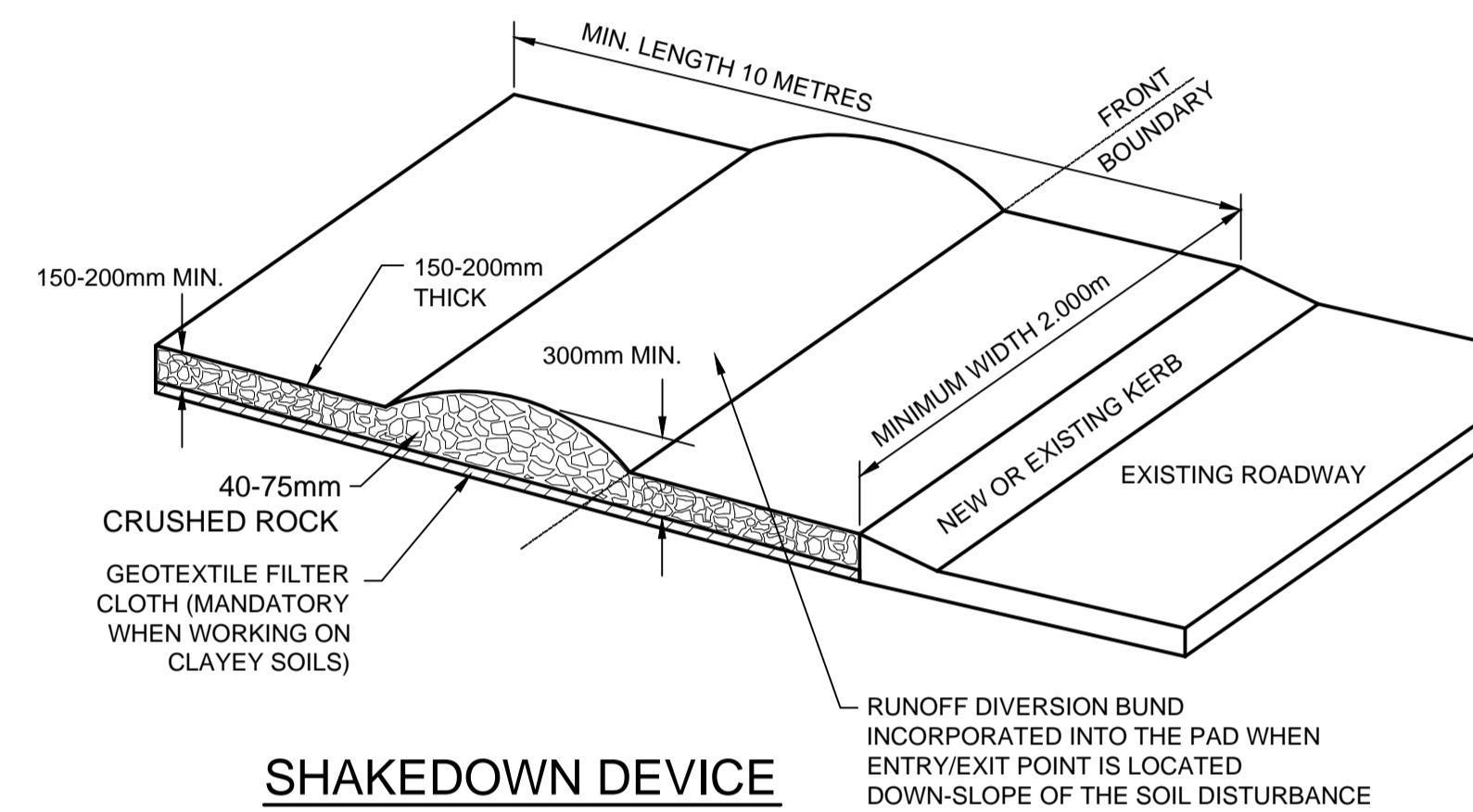
Drawing Title
**ON-SITE DETENTION DETAILS
AND CALCULATION SHEETS
SHEET 2 OF 2**
Scale A1 Project No. 180511 Dwg. No. 105 Issue D
As Shown


SEDIMENT & EROSION NOTES

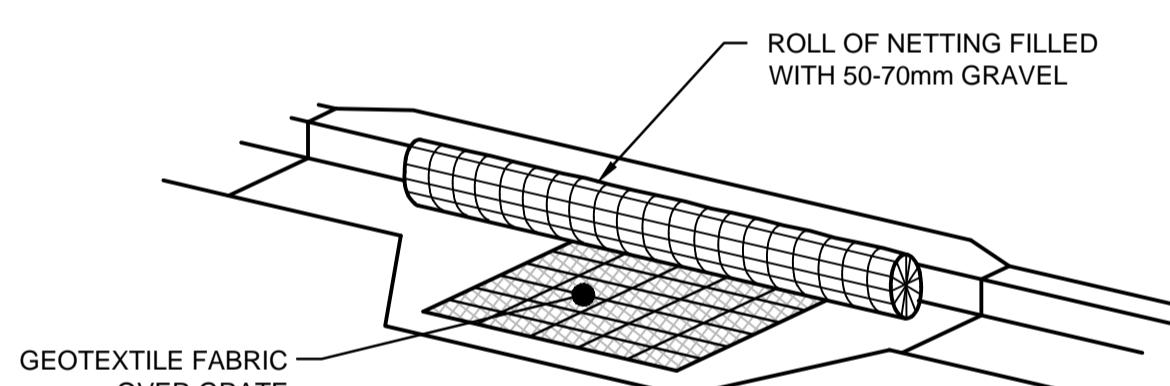
1. IMMEDIATELY FOLLOWING SETTING OUT OF THE WORKS, BUT PRIOR TO COMMENCEMENT OF ANY CLEARING OR EARTHWORKS, THE CONTRACTOR AND SUPERINTENDENT SHALL WALK THE SITE TO NOMINATE THE LOCATIONS AND TYPES OF SEDIMENT AND EROSION CONTROL MEASURES TO BE ADOPTED. THESE MEASURES SHALL BE IMPLEMENTED PRIOR TO ANY CLEARING OR EARTHWORKS AND MAINTAINED UNTIL THE WORKS ARE COMPLETED AND NO LONGER POSE AN EROSION HAZARD, UNLESS OTHERWISE APPROVED BY THE SUPERINTENDENT.
2. IMMEDIATELY FOLLOWING SETTING OUT OF THE WORKS, BUT PRIOR TO COMMENCEMENT OF ANY CLEARING OR EARTHWORKS, THE CONTRACTOR AND SUPERINTENDENT SHALL WALK THE SITE TO IDENTIFY AND MARK TREES WHICH ARE TO BE PRESERVED. NOTWITHSTANDING THE ABOVE, THE CONTRACTOR SHALL TAKE ALL REASONABLE PRECAUTIONS TO MINIMISE DISTURBANCE TO EXISTING VEGETATION AND GROUND COVER OUTSIDE THE MINIMUM AREAS REQUIRED TO COMPLETE THE WORKS AND SHALL BE RESPONSIBLE FOR RECTIFICATION, AT ITS OWN COST, OF ANY DISTURBANCE BEYOND THOSE AREAS.
3. PROVIDE GULLY GRATE INLET SEDIMENT TRAPS AT ALL GULLY PITS.
4. PROVIDE SILT FENCING ALONG PROPERTY LINE AS DIRECTED BY SUPERINTENDENT.
5. ADDITIONAL CONTROL DEVICES TO BE PLACED WHERE DIRECTED BY THE PRINCIPLE.
6. ALTERNATIVE DESIGNS TO BE APPROVED BY SUPERINTENDENT PRIOR TO CONSTRUCTION.
7. WASH DOWN/RUMBLE AREA TO BE CONSTRUCTED WITH PROVISIONS RESTRICTING ALL SILT AND TRAFFICKED DEBRIS FROM ENTERING THE STORMWATER SYSTEM.
8. NO WORK OR STOCKPILING OF MATERIALS TO BE PLACED OUTSIDE OF SITE WORK BOUNDARY.
9. APPROPRIATE EROSION AND SEDIMENT CONTROLS TO BE USED TO PROTECT STOCKPILES AND MAINTAINED THROUGH OUT CONSTRUCTION.
10. IT IS THE CONTRACTORS RESPONSIBILITY TO TAKE DUE CARE OF NATURAL VEGETATION. NO CLEARING IS TO BE UNDERTAKEN WITHOUT PRIOR APPROVAL FROM THE SUPERINTENDENT.
11. TO AVOID DISTURBANCE TO EXISTING TREES, EARTHWORKS WILL BE MODIFIED AS DIRECTED ON-SITE BY THE SUPERINTENDENT.
12. THE LOCATION OF EROSION AND SEDIMENTATION CONTROLS WILL BE DETERMINED ON SITE BY THE SUPERINTENDENT.
13. ACCESS TRACKS THROUGH THE SITE WILL BE LIMITED TO THOSE DETERMINED BY THE SUPERINTENDENT AND THE CONTRACTOR PRIOR TO ANY WORK COMMENCING.
14. ALL SETTING OUT IS THE RESPONSIBILITY OF THE CONTRACTOR PRIOR TO WORKS COMMENCING ON SITE. THE SUPERINTENDENTS SURVEYOR SHALL PEG ALL ALLOTMENT BOUNDARIES, PROVIDE COORDINATE INFORMATION TO THESE PEGS AND PLACE BENCH MARKS. THE CONTRACTOR SHALL SET OUT THE WORKS FROM AND MAINTAIN THESE PEGS.
15. PLANS ARE MINIMUM REQUIREMENTS AND ARE TO BE USED AS A GUIDE ONLY. EXACT MEASURES USED SHALL BE DETERMINED ON SITE IN CONJUNCTION WITH PROGRAM OF CONTRACTORS WORKS etc.


FIELD INLET SEDIMENT TRAP

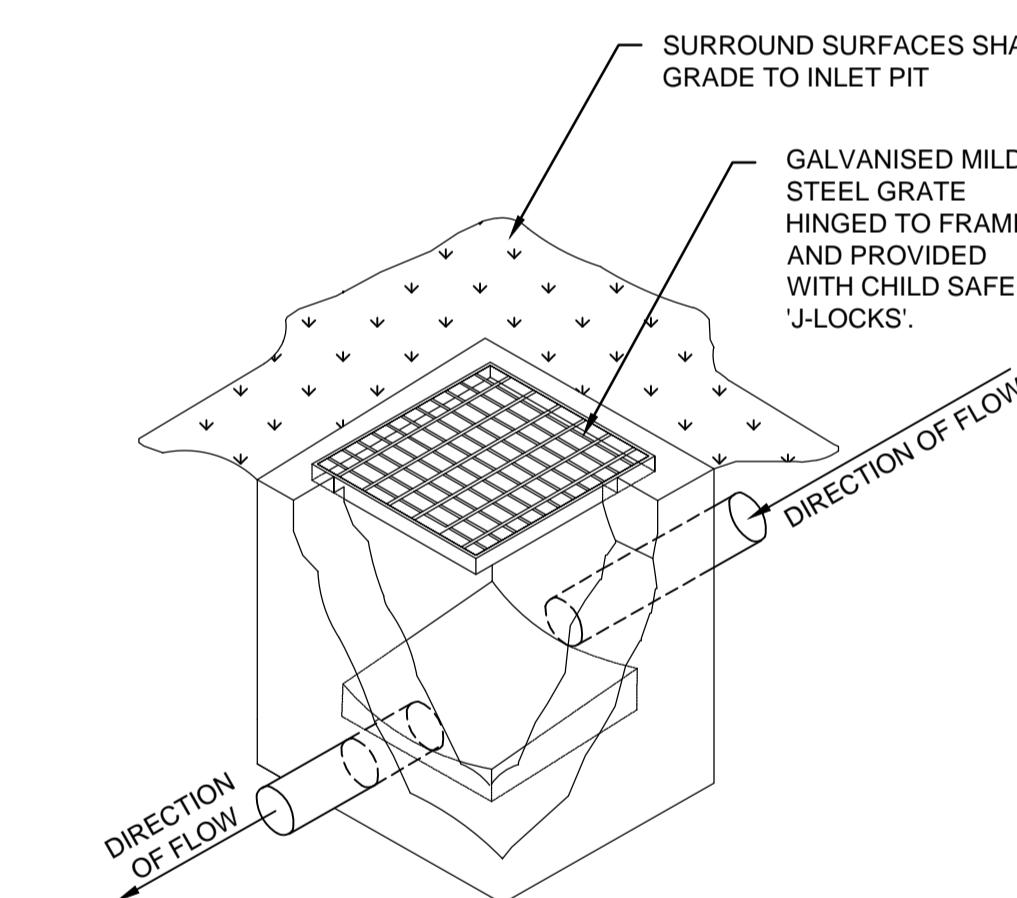
N.T.S.


GRATED DRAIN DETAIL

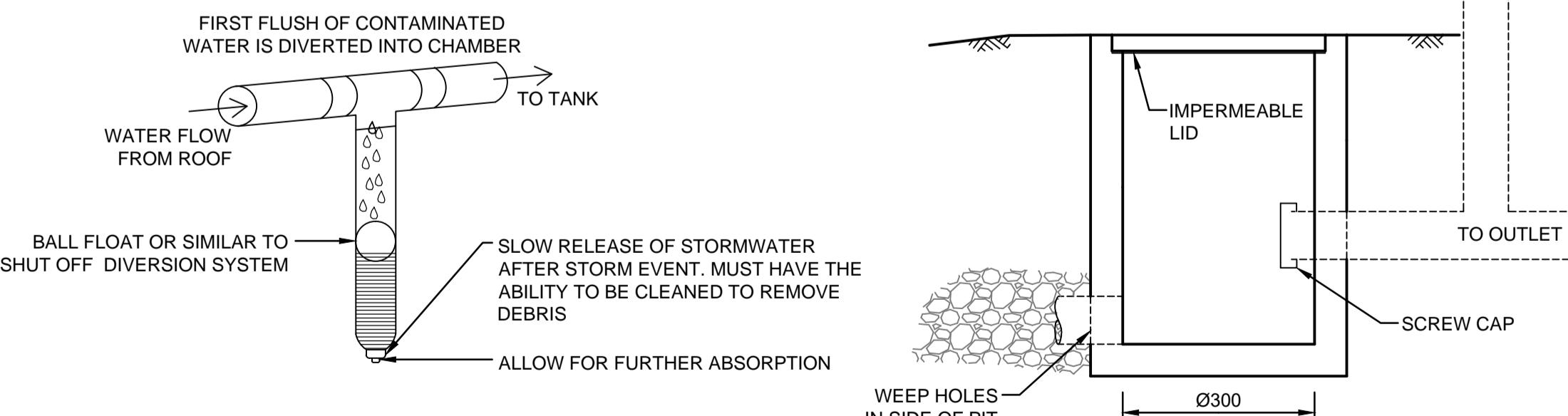
N.T.S.


RAINWATER TANK DETAIL

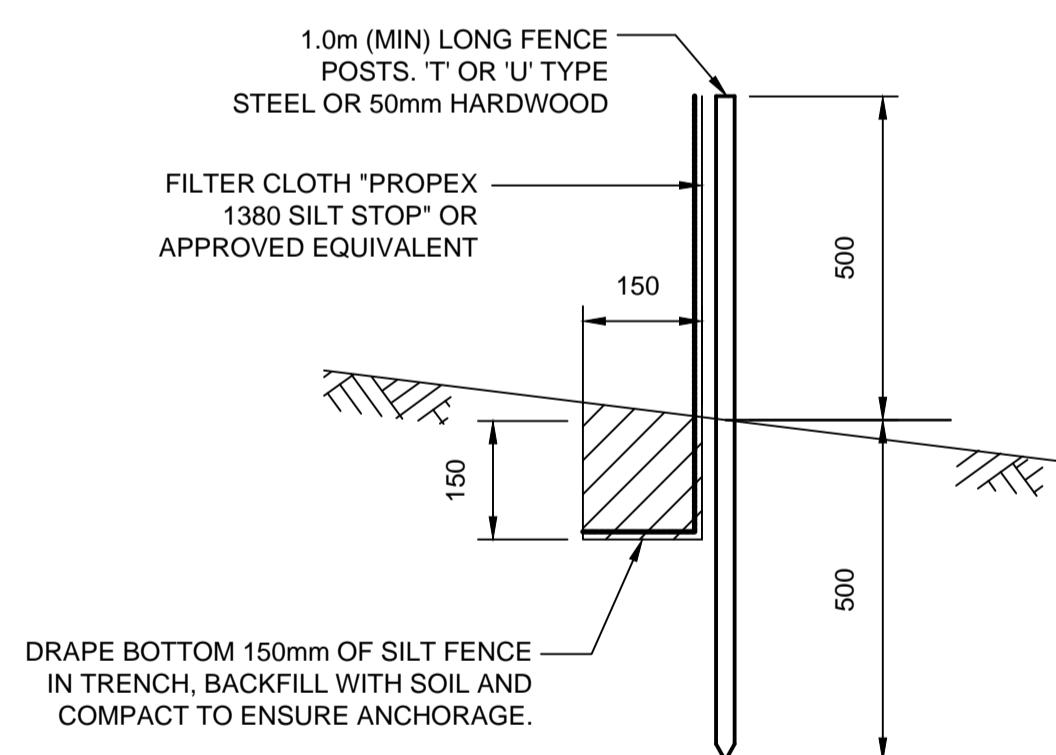
N.T.S.


SHAKEDOWN DEVICE

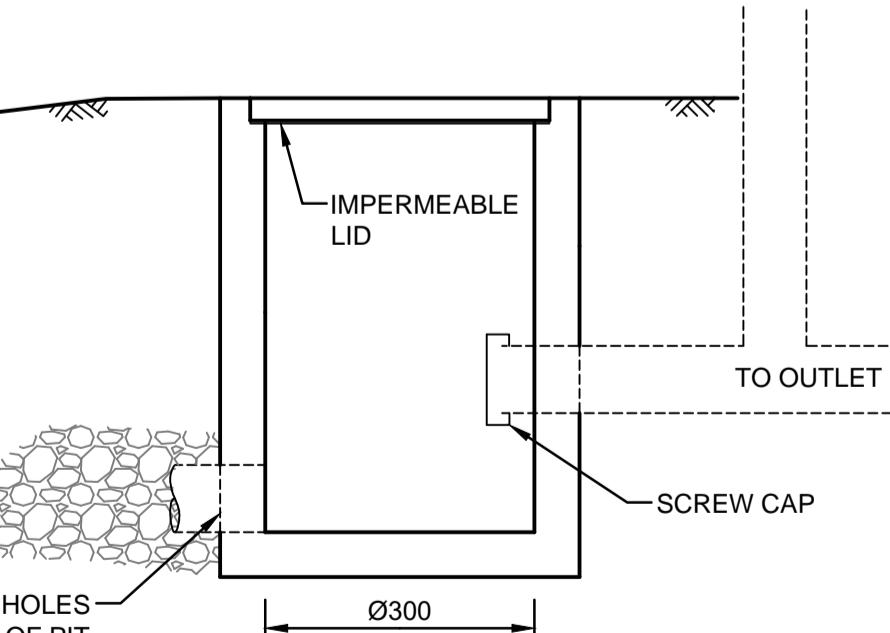
N.T.S.


**KERB INLET PROTECTION
SAG GULLIES**

N.T.S.


**TYPICAL GRATED
INLET PIT DETAIL**

N.T.S.


**FIRST FLUSH WATER
DIVERTER DETAIL**

N.T.S.

SILT FENCE DETAIL

N.T.S.

CLEANING EYE DETAIL

N.T.S.

SILT FENCE NOTES:

1. FILTER CLOTH TO BE FASTENED SECURELY TO POSTS WITH GALVANISED WIRE TIES, STAPLES OR ATTACHMENT BELTS.
2. POSTS SHOULD NOT BE SPACED MORE THAN 3.0m APART.
3. WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN EACH OTHER THEY SHALL BE OVERLAPPED BY 150mm AND FOLDED.
4. FOR EXTRA STRENGTH TO SILT FENCE, WOVEN WIRE (14mm GAUGE, 150mm MESH SPACING) TO BE FASTENED SECURELY BETWEEN FILTER CLOTH AND POSTS BY WIRE TIES OR STAPLES
5. INSPECTIONS SHALL BE PROVIDED ON A REGULAR BASIS, ESPECIALLY AFTER RAINFALL AND EXCESSIVE SILT DEPOSITS REMOVED WHEN "BULGES" DEVELOP IN SILT FENCE
6. SEDIMENT FENCES SHALL BE CONSTRUCTED WITH SEDIMENT TRAPS AND EMERGENCY SPILLWAYS AT SPACINGS NO GREATER THAN 40m ON FLAT TERRAIN DECREASING TO 20m SPACINGS ON STEEP TERRAIN.

NOT FOR CONSTRUCTION

	Description	Date	Design	Checked
D	ARCHITECTURAL AMENDMENTS	01/02/2019	JTF	JAB
C	COUNCIL COMMENTS	12/06/2018	JTF	JAB
B	COUNCIL COMMENTS	17/05/2018	JTF	JAB
A	ISSUE FOR DEVELOPMENT APPLICATION	19/04/2018	JTF	JAB
Issue	Description	Date	Design	Checked
	1cm at full size	10cm	20cm	

[Handwritten signature]

Certification By Dr. Anthony Hasham (NPER):

Architect

**IDRAFT
ARCHITECTS**
Unit 43, 2 Slough Ave,
Silverwater NSW
PHONE : (02) 9648 8848

Council

The Hills Shire Council

Scale

0 4 8 12 m
SCALE 1:200 @ A1

AUSTRALIAN
CONSULTING
ENGINEERS.

AUSTRALIAN PTY LTD - A.C.N. 084 059 941
CONSULTING ENGINEERS. SHOP 2-141 CONCORD RD NORTH STRATHFIELD NSW 2157
PH: (02) 9763 1500 FX: (02) 9763 1515
EMAIL: info@aceeng.com.au

Project
1 LARAPINTA PLACE, GLENHAVEN NSW
PROPOSED MOSQUE
STORMWATER CONCEPT PLANS
DEVELOPMENT APPLICATION

Drawing Title
MISCELLANEOUS
DETAILS SHEET

Scale A1 Project No. 180511 Dwg. No. 106 Issue D